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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

INVESTIGATION OF A 10-STAGE SUBSONIC AXTAL-FLOW RESEARCH COMPRESSCR
V - EFFECT OF REDUCING INLET-GUIDE-VANE TURNING ON OVER-ALL
AND INLET-STAGE PERFCORMANCE

By Ray E. Budinger and George K. Serovy

SUMMARY

The inlet-guide-vane setting of a 10-stage compressor was reduced
in order to approximate more closely the design absolute entrance flow
angles to the first rotor. In order to determine the effects of the
radial redistribution of flow conditions entering the first rotor caused
by resetting the guide vanes, the performance of the inlet stage was ob-
tained simultaneously with the over-all compressor performance for both
the original and the reduced incidence angles. At the reduced guide-
vane setting, only the speeds above the knee in the compressor surge
line were noticeably affected. At design speed, the surge pressure ratio
increased from 7.52 to 7.66, the maximum equivalent welght flow increased
from 56.7 to 58.2 pounds per second, and the peak efficiency increased
approximately 1 polnt, to 0.815. The knee in the compressor surge line
occurred at a slightly higher speed at the reduced guide-vane incidence,
being Ilnitiated at 73-percent design speed compared with 70 percent for
the original gulde-vane setting. The wall static-pressure-ratio distri-
bution through the compressor indicated that the changes in high-speed
compressor performance were due primarily to the increased loading on
the first rotor row.

Inlet-guide-vane resetting appears to be a possible means of ob-
taining design-point operation in an axial-flow compressor. Slight ad-
Justments in guide-vane setting that will permit the inlet stage to
operate in a favorable range of angle of attack can be made to compen-
sate for design-efficiency and boundary-layer assumptions, Analysis and
experimental data indicate that very large guide-vane adjustments would
be required to improve the starting and acceleration characteristics of
a Jet engine.
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2 CONFIDENTIAL NACA RM E53H10

INTRODUCTION

The preliminary analysis of the over-all performance of the 10~
stage subsonic axial-flow compressor presented in reference 1 indicated
that the inlet-stage rotor was operating considerably below its design
pressure ratio at design speed. Subsequent surveys of absolute flow
angles entering the first rotor showed that the inlet gulde vanes were
overturning the air by approximately 4° across most of the annulus. In
order to determine the performance of the compressor with the design
entrance flow angles, the inlet guide vanes were reset to approximate
more closely the design guide-vane turning. Several reports on airfoil
cascades indicate that the change in turning angle is approximately
0.8 to 0.9 of the change in incidence angle. On this basis the inlet
gulde vanes were reset to a -5° incidence angle.

From a consideration of simple radial equilibrium after the guide
vanes, the change in flow angle leaving the guide vanes will be accom-
panied by changes in the radial distribution of axial velocity and angle
of attack at the entrance to the first rotor row. In order to determine
the effects of this radial redistribution of the flow entering the com-
pressor, the performance of the inlet stage and the over-all compressor
performance were obtained for both the 0° and the -5° guide-vane inci-
dence angles over a range of weight flow at speeds from 50 to 100 percent
of design equivalent speed. A comparison of the results of the two
phases of the investigation, which was conducted at the NACA Lewis labora-
tory, is presented herein.

APPARATUS AND INSTRUMENTATION

The 20-inch tip diameter, 10-stage axial-flow compressor reported
in references 1 and 2 and schematically shown in figure 1 was used for
the investigation. The test installation and instrumentation for the
determination of the over-all compressor performance are the same as
those presented in reference 1.

Moisture condensation, which resulted in corrosion of the flow pas-
sages and blading, took place after the use of refrigerated air during
the initial investigation of the compressor. All rust was removed, and,
in order to prevent further corrosion, the rotor, the stator casing, and
all the blading were sprayed with a thin coat of heat-resistant aluminum
paint before both phases of the present investigation. The painting of
the flow passages reduced the peak efficiency of the compressor at all
speeds, with the greatest decrease occurring at the low speeds. The
compressor total-pressure ratio appeared to be unaffected by the change
in surface finish.
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The inlet stage comprised 36 circular-arc constant-thickness sheet-
metal guide vanes, 25 rotor blades, and 27 stator blades. The design
details are presented in reference 2. A sketch of the inlet gulde vane,
including some pertinent dimensions, is shown in figure 2.

Radial survey instrumentation, which was located at station 1
(after the inlet guide vanes) and at station 3 (after the first stator)
as indicated in figure 1, consisted of a combination claw-total-pressure
probe (fig. 3(a)) at each measuring station for the determination of
the flow angle and the total pressure before and after the first stage.

In addition, two five~tip spike-type radial thermocouple rekes (fig. 3(b))

were located at station 3. The thermocouples were calibrated over the
range of Mach number encountered in this investigation. The instrument
measuring stations were placed radially at area centers of equal annular
areas before and after the inlet stage and around the periphery of the
compressor so that they would be free of upstream instrument and blade
wakes.

The inlet-stage total pressures were referenced to wall static-
pressure taps at the same axial measuring station on U-tubes. The meas-
uring fluid was tetrabromoethane. The temperature rise across the stage
vas measured on a potentiometer in conjunction with a spotlight gal-
vanometer. Since the inlet stage operates stalled in the tip region of
the annulus at low speeds, the accuracy of the measurements in this
region is questionable. However, the consistency of the trends in the
stall region appears to justify their use at least for comparison pur-
poses.

PROCEDURE

The compressor was operated at equivalent speeds from S0 to 100
percent of design for both the 0° and -£° guide-vane incidence-angle
investigations. At each speed a range of air flow was investigated from
a maximum flow at which the compressor was choked to a minimum flow at
which audible surge was encountered. The inlet pressure was varied to
maintain a constant average Reynolds number of approximately 190,000
relative to the first rotor at the tip at all speeds. The over-all com-
pressor performance was evaluated from a calculated discharge total
pressure obtained from the average discharge static pressure, the total
temperature, and the orifice weight flow with the method recommended in
reference 3,

The stage temperature rise was measured differentially with the
depression tank (station 0), and the total temperature was assumed to
remain constant from the depression tank to station 1. The total pres-
sures and total temperatures measured at station 3 were arithmetically
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4 CONF IDENTIAL NACA RM ES53H10

averaged for the five radial survey stations. With these averages and
with the compressor-inlet conditions at station 1 and the air tables of
reference 4, the total-pressure ratio and adiabatic temperature-rise
efficiency of the inlet stage were determined. The inlet-stage per-
formance is presented in terms of flow coefficient and equivalent total-
pressure ratio, which method eliminates the speed parameter and results
in a single performance curve that 1is essentially independent of speed.
The stage performance parameters are derived in reference 5 and are also
used in the following form in reference 6 (all symbols are defined in
the appendix):

Flow coefficient:
r-1l
_.Q_-_-wj.?}_ ]_+Y..:}.M2
UA;  UAIPy
The Mach number was approximated from the ratio of the total pressure to
the average wall static pressure at station 1.

Equivalent total-pressure ratio:

- -
-1

(;%)e = (Yo + 1.o)Y

where
AH.
U
and

U\ 1

o (J§T>d °p

RESULTS AND DISCUSSION
Compressor Performance

Guide-vane turning angle. - A comparison of the variation of guide-
vane turning angle with radius ratio for both the 0° and -5° incidence-
angle settings is presented in figure 4 at a high speed where the inlet
stage is operating unstalled.
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The guide venes for the compressor were originally designed with the
design rule for convergent annuli presented in reference 7. The fact
that the gulde vanes overturned the air as shown in figure 4 when set at
0° incidence angle may be attributed to the following factors:

(1) Corrections to the desired design guide-vane turning were ap-
plied to account for compressibility end hub taper. These corrections
should not have been applied, because the design rule was determined
from experimental data obtained in convergent annuli at inlet Mach num-
bers very close to those encountered in operating the compressor. The
hub taper correction increased the guide-vane turning in this region by
as much as 2°. The compressibility correction increased the turning from
0.2° at the hub to 0.7° at the tip.

o
(2) The accuracy of the design rule is approximately il% over most

of the vane height, which, if applied in the proper direction, may
account for some of the guide-vane overturning.

(3) The manner in which the guide vanes were set with a straight
edge between the leading and tralling edges of the vanes causes a devia-
tion of approximately 0.5° to 1° from a chord-line setting. The megni-
tude of this deviation depends on the point along the blade span at which
the vanes were set. Since the tralling-edge radius is smaller than the
leading-edge radius of the vane, as shown in figure 2, the deviation in
setting angle will also be in the direction of overturning the air.

Resetting the guide vanes to a -5° incidence angle in accordance
with airfoil cascade data resulted in good agreement of the absolute
flow angles with the design values (fig. 4).

Over-all performance characteristics. - A compgrison of the com-
pressor over-all performance characteristics with 0~ and -5° guide-vane
incidence angles is presented in figures 5(a) and (b) as total-pressure
ratio and adiabatic temperature-rise efficlency plotted against equiva-
lent weight flow over a range of equivalent speeds from 50 to 100 per-
cent of design. The design-speed surge point was not obtalned for the
0° guide-vane incidence angle; however, the curve in figure 5(a) was
drawn to culminate at the surge line of the origlinal over-all perform-
ance investigation (ref. 1). The design-speed surge point of reference
1 is represented by the large symbol (fig. 5(a)). At this point, the
maximum total-pressure ratio increased from 7.52 to 7.66 for the -5°
guide-vane incldence angle, with an attendant increase in equivalent
welght flow from 53.7 to 54.6 pounds per second. The maximum weight
flow at design speed increased approximately 2.6 percent, from 56.7 to
58.2 pounds per second.

The peak adiabatic temperature-rise efficiency (fig. 5(b)) in-
creased approximately 1 point at design speed to 0,815 with the reduced
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incidence angle. At low compressor speeds (50 to 70 percent of design),
the effect of the gulde-vane resetting appears to be negligible. The
total-pressure ratio, adiasbatic temperature-rise efficiency, and equiva-
lent welight flow are the same within the accuracy of measurement at these
speeds. These results indicate that design-speed performance was im-
proved without seriously impairing the low-speed chargcteristics of the
compressor by reducing the inlet guide-vane turning 5-. This fact can
probably be attributed to the flat pressure-ratio characteristic of the
inlet stage (ref. 6) when operating in the stall region at low speeds.

Surge-line characteristics. - As shown in figure S(a) and as pre-
viously reported in reference 6, the compressor surge line had a slight
knee at 70 percent of equivalent design speed. A comparison of the
original surge line (0° guide-vane incidence angle) and that obtained
with the reduced incidence angle is shown in figures 5(a) and (c¢). The
knee in the compressor surge line is usually characterized by an sbrupt
increase in surge equivalent weight flow, total-pressure ratio, and
adiabatic temperature-rise efficiency with increasing speed, as shown
in figure 5(c), where these parameters are plotted against percentage
of equivalent design speed for both investigations. The effect of the
guide-vane resetting was to move the knee in the compressor surge line
from 70 to 73 percent of equivalent design speed.

Static-pressure-ratio distributions. - The effect of guide-vane re-
setting on the over-all, stage, and blade-row static-pressure ratios ob-
tained from the outer wall static taps is shown in figure 6. The com-
parison is made at an over-all compressor static-pressure ratio of
approximately 6.25, which corresponds to the peak-efficiency point at
design speed for both guide-vane settings, in order to determine how the
stage loading varied through the compressor in obtaining the same over-
all pressure ratio. The figure indicates that only the first-stage
rotor is seriously affected by the change in guide-vane incidence angle.
The increased static-pressure rise across the first rotor must be com-
pensated for by a smaller rise in some other stage or stages, It is
evident from figure 6 that the smaller rise in static-pressure ratio is
spread out among the remaining blade rows so that the effect appears
negligible. Consequently, the increase in pressure ratio obtained at a
given flow condition can probably be attributed primarily to the increased
loading on the first rotor row.

Inlet-Stage Performance

The discussion of the over-all compressor performance presented in
the previous sections indicates that the inlet stage is primarily respon-
sible for the changes in over-all compressor performance obtained when
the guide-vane incidence angle 1is reduced. In the following sections,
the effect of the guide-vane resetting on the inlet-stage performance
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and its subsequent effect on the over-all performance are analyzed on
the basis of the radial distribution of flow conditions entering the
first rotor and the blade-element performance at five radiil across the
inlet stage.

Inlet-stage over-all performance characteristics. - The over-all
performance characteristics of the inlet stage are presented as dimen-
sionless parameters of equivalent total-pressure ratio and adiabatic
temperature-rise efficiency against flow coefficient in figure 7. The
data are incomplete at design speed because of moisture condensation and
subsequent freezing on the probes and in the manometer lines when test-
ing with refrigerated air. The peak equivalent total-pressure ratio of
the inlet stage increased from a value of approximately 1.200 to 1.225
with the decreased incidence angle on the inlet guide vanes. The peak
of the curve also occurred at a higher flow coefficient for the de-
creased incidence. This latter effect might be expected, since the flow
coefficient can be reduced to a ratio of axial velocity to wheel speed.
For any given absolute flow angle entering a rotor row, the relative
flow angle (and, hence, the angle of attack) is a function of the ratio
of axial velocity to wheel speed and hence flow coefficient. Decreasing
the guide-vane incidence angle, which increases the angle of attack on
the first rotor, will cause the angle of attack for peak pressure ratio
to occur at a higher equivalent weight flow. The increase in flow co-
efficient required to obtain the same average angle of attack on the
first stage for the reduced guide-vane incidence will displace the per-
formence curve shown in figure 7 toward a higher flow coefficient. The
increase in peak equivalent total-pressure ratio of the inlet stage can
be partially attributed to the higher flow coefficient at which the peak
value is obtained. At the higher flow coefficient, the increase in
axial velocity required to obtain the same average angle of attack while
maintaining the same turning angle through the rotor will increase the
change in tangential velocity across the rotor and thereby increase the
total-pressure ratio of the stage. The difference in peak efficiency
at the two guide-vane incidence angles for the inlet stage is believed
to be within the accuracy of the measurements obtained.

Flow conditions at entrance to first rotor row. - The investigation
of the inlet stage with the 0° guide-vane incidence also included radial
surveys of static pressure at station 1, which permitted the direct cal-
culation of the flow velocities entering the first rotor. The flow veloc-
ities and angles of attack entering the first rotor were also calculated
with the measured flow angles leaving the guide vanes and simple radial
equilibrium with the following equation from reference 8 (in the nomen-
clature of this report):

CONFIDENTTAL
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21

2
sin® 8
- 14y
Z .
Va _ cos Bl . Zl,ref 1
Va,ref ¢85 B1 rer
where
v _ Vazref
ref ~ cos B1,ref

The reference velocity after the guide vanes was determined near
the tip from the wall static pressure and the corresponding total pres-
sure obtained at the radial measuring station closest to the casing,
except for the calculation at low speeds, where the reference velocity
was adjusted to more nearly satisfy continuity. A comparison of the
measured and calculated angles of attack at the O° gulde-vane incidence
is presented for three flow coefficients in figure 8(a). The agreement
with simple radial equilibrium at all flow coefficients is falrly good.
The agreement between measured and calculated values at O° guide-vane
incidence Justified the use of the simple-radial-equilibrium method in
determining the flow velocities and angles of attack entering the first
rotor for both guide-vane incidence settings. Since no static-pressure
surveys were obtained for the -5° guide-vane incidence, the simple-
radial-equilibrium calculation method of determining the flow velocities
was used to obtain a common basis of comparison for the two guide-vane
settings.

The radial distribution of axial-velocity ratio and of angle of
attack for both guide-vane incidence angles is presented for three flow
coefficients in figures 8(b) and (c), respectively. 1In order to satisfy
the simple-radial-equilibrium relation, the decrease in guide-vane dis-
charge angle shown in figure 4 requires an increase in axial velocity at
the tip and a decrease at the hub (fig. 8(b)). At the same flow coeffi-
cient, the average angle of attack for the reduced guide-vane incidence
will be increased; however, the change in axial-velocity distribution
required to satisfy simple radial equilibrium produces a smaller in-
crease in angle of attack at the tip than at the hub (fig. 8(c)). 1In
order to determine the effects on the inlet-stage performance of this
radial redistribution of flow conditions entering the first rotor row,

a study of the blade-element data is necessary.

Stage-element performance. - The performance of the inlet stage at
five radial elements from tip to hub is presented in figure 9 as equiva-
lent total-pressure ratio and adisbatic temperature-rise efficiency
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plotted against angle of attack. The angle of attack was computed from
the guide-vane turning and simple radial equilibrium, as described in
the previous section. The equivalent total-pressure ratio obtained at
all five radial positions is higher for the same angle of attack for the
-5° than for the 0° guide-vane incidence angle at the higher speeds
where the inlet stage is operating unstalled. The efficiency of each
stage element remained approximately the same. The angle-of-attack
range of the blade section near the tip (radial position a, fig. 9(a))
for any given speed moves to a slightly higher set of values of angle

of attack for the reset guide vanes. However, at design speed the angle
of attack at the choke-flow point is approximately 1.5° for both guide-
vane Incidence-angles. Therefore, the weight-flow limitation of this
compressor at high speeds appears to be caused by choking of the tip
sections of the inlet stage. This effect was indicated in the inter-
stage performance investigation reported in reference 6.

At low compressor speeds, where the tip section is.severely stalled,
the effect of increasing the angle of attack is negligible. The effi-
ciency of this section (fig. 9(a)) drops rapidly at angles of attack
higher than approximately 19°, which indicates a stage-element stall at
this point. As could be expected, the stall angle of attack is un-
affected by the change in gulde-vane incidence angle.

At each successive radial element toward the hub (figs. 9(b) to
(e)) the angle-of -attack range moves toward an increasingly higher value,
as was previously indicated by the change in radial distribution of
angle of attack in figure 8(c). At radial positions b and c (figs.
9(b) and (c)), the stage-element stall occurs at an angle of attack of
approximately 23° and 269, respectively. The stage elements closest to
the hub (@ and e, figs. 9(d) and (e)) do not appear to have a definite
stall point, as indicated by the elimination of the sharp drop in effi-
ciency that usually accompanies stall.

The higher equivalent total-pressure ratio obtained across the in-
let stage with the reset guide vanes conld be attributed to the higher
flow coefficient at which the same average angle of attack was obtained.
From a consideration of the radial redistribution of angle of attack
entering the first rotor for the reduced guide-vane incidence, the hub
elements would do more work when the stage is operating at the same
average angle of attack than the tip elements. The stage-element data,
however, indicate that all the elements of the inlet stage are operating
with approximately the same increase in equivalent total-pressure ratio.
The uniform increase in total-pressure ratio obtained radially, rather
than the expected larger increase at the hub than at the tip, can be ex-
plained from a study of typical velocity vector disgrams in conjunction
with the results of reference 9. The radial distribution of flow condi-
tlons entering the first rotor for the case in which the mean-radius
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angle of attack is the same for both gulde-vane settings is shown in
figure 10. The vector diagrams are presented in terms of velocity ratios
for the tip, mean, and hub radial positions in figure 11.

The variation of turning angle with angle of attack was determined
from the cascade data of reference 10, The stage pressure rise is a
direct function of the change in tangential velocity across the rotor.
As can be seen on the velocity diagrams of figure 11, the change in
tangential velocity is dependent on the turning angle, the relative in-
let velocity, and the change in axial velocity across the rotor. At
the tip radial position, the decreased angle of attack shown in fig-
gures 10 and 11(a) for the reduced guide-vane incidence will tend to de-
crease the total-pressure ratio, while the increased relative inlet
velocity shown in figure 10 and the greater reduction in axial velocity
across the rotor tip indicated by reference 9 will tend to increase the
total-pressure ratio. Thus, if the latter two effects dominate as showmn
on figure ll(a), a greater total-pressure rise would be obtained than
would be expected from the increase in flow coefficient alone.

At the mean-radius position (fig. 11(b)), where the angle of attack
was selected to be identical for both guide-vane incidence angles, the
greater total-pressure rise can be attributed primarily to the increased
relative inlet velocity. Reference 9 indicates that the change in axial
velocity across the rotor will remain about the same at the mean-radius
blade section for both guide-vane settings.

Near the hub, the angle of attack and relative inlet velocity will
be greater for the reduced guide-vane incidence (figs. 10 and ll(c)) and
will increase the pressure ratio, while the axial-velocity ratio will
increase across the rotor hub (ref. 9) and tend to decrease the pres-
sure ratio. The relative discharge flow angle from the rotor is suffi-
ciently small near the hub that the change in axial velocity has little
effect on the change in tangential velocity.

Effect of Guide-Vane Resetting on Compressor Performance

In order to point out some of the complications that may arise be-
cause of guide-vane resetting and to indicate the direction of the
effects on the performance characteristics of axial-flow compressors, a
simple-radial-equilibrium analysis of the flow conditions entering the
first rotor row of this compressor was made for guide-vane incidence
angles of 20° to -10°, This analysis required a knowledge of the abso-
lute flow angles leaving the guide vanes. Therefore, 1t was assumed
that the change in guide-vane turning angle would be 0.8 of the change
in incidence aungle at all radii. The change in gulde-vane turning was
then applied to the average measured guide-vane angles obtalned in the
high flow-coefficlent range at 0° guide-vane incidence to obtailn the
new guide-vane turning angles for the selected incidence angle. The
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radiasl distribution of axial velocity required to satisfy simple radial
equilibrium is shown in figure 12(a) as the ratio of axial velocity to
the mean-radius axial velocity for guide-vane incidence angles from 20°
to -10°, The change in axial-velocity distribution will cause much
smaller changes in angle of attack in the tip region than near the hub,
as shown in figures 12(b) and (c), where the radial distribution of
angle of attack at a high and at a low flow coefficient is presented
over a range of guide-vane incidence angles from 20° to -10°, At the
higher flow coefficient, the change in angle of attack for a given
change in guide-vane incidence 1s much greater than at the lower flow
coefficient, The magnitude of the angles of attack at the low flow
coefficient indicates that the tip blade sections will probably operate
in the stall region within the practical range of guide-vane adJjustment.

Adjustable guide vanes have been used in some Jet engines in an
attempt to alleviate starting and acceleration problems. Improvement
in starting and accelerating cheracteristics could be obtained by in-
creasing the low-speed efficiency of the compressor by adjusting the
inlet guide vanes toward highly positive incidence angles and thus
allowing the first-stage rotor to operate closer to design angle of
attack. The reduction in angle of attack on the inlet stage is caused
by the twofold effects of the increase in guide-vane incidence combined
with the increase in weight flow obtained because of unchoking of the
exit stages at low speeds. The improvement in angle of attack will
occur primarily in the hub blade section, as indicated in figures 12(b)
and (c). Since these blade sections normally operate efficiently over
a very wide range of angle of attack (figs. 9(d) and (e)), little im-
provement in inlet-stage efficiency could be obtained. The radial re-
matching in the first rotor and the stage interaction effects downstream
of the first rotor would determine the over-all compressor efficiency.

The knee that occurs in the surge line of most high-pressure-ratio
compressors has prevented some engines from accelerating to design
speed. The point at which the knee occurs has been associated with
stall of the inlet stage, as indicated in references 5 and 6; and the
magnitude of the knee appears to be affected by the stage interaction
effects that occur downstream of the stalled stage. Increasing the
guide-vane incidence will cause the knee in the compressor surge line
to occur at a lower speed and weight flow (ref. 5); while decreasing
the guide-vane incidence will shift the knee to a higher speed and flow
(fig. 5(a)). The magnitude of the knee will increase when it occurs st
a higher speed because of the higher pressure level at which the inlet
stages are operating. At speeds below the knee in the surge line, in-
creasing the guide-vane incidence will tend to increase welght flow
through the compressor, because the higher pressure ratio of the inlet
stage will unchoke the exit stages. At speeds above the knee in the
surge line, the increased guide-vane incidence would decrease the flow,
because the inlet stage would operate at lower angles of attack, and,

thus, the pressure ratio would be reduced and the exit stages would
choke at a lower flow.
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12 CONFIDENTIAL NACA RM ES53H10

The knee in the compressor surge line may not be eliminated by
guide-vane adJjustment, but the location of the knee may be changed with- .
in limits, as evidenced by the results of this experimental investiga-
tion and those of reference 5. The analysis and experimental data
indicate that large gulde-vane adjustments would be required in order to
improve the starting and acceleration characteristics of a Jet engine.

Slight gulde-vane adjustments can be used effectively in improving
the design-speed performance of a given compressor. Efficiency assump-
tions and boundary-layer allowances used in the design of a compressor
determine the area ratios and the design weight flow. Since these
assunptions are based on fragmentary experimental results and are sub-
Ject to errors, design-point operation is usually not obtained. In
order to compensate for these errors and to obtain approximately design
angles of attack on all stages in the compressor, slight guide-vane ad-
Justments can be made that will increase or decrease the weight flow at
design over-all total-pressure ratio as needed. These small changes in
gulde~-vane incidence will probably have very little effect on the low-
and intermediate-speed performance of the compressor.

3003

SUMMARY OF RESULTS AND CONCLUSIONS

The inlet-guide-vane incidence angle of a 10-stage subsonic axial-
flow compressor was reduced 5° in order to approximate more closely the
design flow conditions entering the first rotor. The effects of the re- )
duced gulde-vane incidence on the over-all and inlet-stage performance
of the compressor were as follows:

l. With the reduced guide-vane incidence, the surge pressure ratio
increased from 7.52 to 7.66, the maximum equivalent weight flow in-
creased from 56.7 to 58.2 pounds per second, and the peak efficiency
increased approximately 1 point to 0.815 at design speed.

2. At speeds below the knee in the surge line, reducing the guide-
vane incidence 5° had a negligible effect on the compressor performance.
At speeds above the knee in the surge line, the choke weight flow and
surge pressure ratio were increased.

3. The compressor surge line remained unchanged except in the
intermediate-speed range. The initiation of the knee in the surge line
increased from 70 to 73 percent of equivalent design speed, and the mag-

nitude of the knee was slightly greater at the reduced guide-vane
incidence.

4. The wall static-pressure ratios through the compressor indi-
cated that only the performance of the first rotor row was affected by
the guide-vane resetting, with no appreciable change in the loading -
distribution of the remaining blade rows.

WAL T T Ty
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5. The peak equivalent total-pressure ratio of the inlet stage was
increased from 1.200 to 1.225 with approximately the same efficiency.
The peak efficiency and peak equivalent total pressure occurred at a
higher flow coefficient at the reduced guide-vane incidence. The equiva-
lent total-pressure ratio obtained across each of five radial elements
of the inlet stage was greater at the same angle of attack on a given
element for the -5° gulde-vane setting.

6. Analysis and experimental data indicate that very large guide-
vane adjustments would be required in order to improve the starting and
acceleration characteristics of a Jet engine,

7. Small changes in inlet-gulde-vane setting appear to be a feas-
ible means of correcting for efficiency and boundary-layer assumptions
used in a compressor design so that design-point operation may be
obtained,

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 24, 1953
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APPENDIX - SYMBOLS
The following symbols are used in this report:
annulus area, sq ft
blade chord, in.
specific heat at constant pressure, Btu/(1b)(°F)
total enthalpy, Btu/lb

angle of incidence, angle between tangent to blade camber line
at leading edge and inlet-air direction, deg

Mach number

total pressure, in. Hg abs
static pressure, in. Hg abs
volume flow, cu ft/sec

gas constant, ft-1b/(1b)(°F)
total temperature, °r

rotor tip speed, ft/sec
absolute velocity, ft/sec

weight flow, 1b/sec

|

‘r-

P
pressure-ratio function, (? ) -1

radius ratio
angle of attack, deg

absolute inlet alr angle, angle between compressor axis and
absolute air velocity, deg

ratio of specific heats
ratio of total pressure to standard sea-level pressure

adiabatlc temperature-rise efficiency

CONFIDENTIAL

50}
o
(&
12}




150,01

NACA RM ES53H10 CONFIDENTIAL 15

0 ratio of total temperature to standard sea-level temperature

) blade camber angle, deg

o solidity, ratio of chord to spacing

[\ blade setting angle, angle between compressor axis and blade
chord

Subscripts:

a axial

a design conditions

e equivalent, indicates that the parameter to which it is
affixed has been corrected to design speed

is isentropic process

m mean radius

n station number

ref reference

0 inlet depression tank

1 discharge of inlet guide vane

2,4,6 stations behind rotors, first, second, third, . . . tenth

. o« 20 stage

3,5,7 stations behind stators, first, second, third, . . . tenth

. . . 21 stage

22 discharge of exit guide vanes

Superscript:

! relative to rotor blade row
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3.75" rad.

Trailing-edge
/ detall

' . Blade coordinates
Radius, | Camber Chord, c, | Solidity,
in. angle, H, in. o]
deg
5.25 17.2 1.134 1.238
5.50 19.0 1.238 | me---
5.75 20.6 1.3 | -----
6.00 22.0 1.431 1.367
6.25 23.5 1.527 | o ~----
6.50 25.0 1.623 | ~=~-=-
6.75 26.5 1.719 | ===~
7.00 28.1 1.821 1.491
10.00" 7.25 29.86 1.916 | =--=-
rad. 7.50 31.2 2,017 |  -=---
7.75 32.8 2.118 |  ee=--
l 8.00 34.5 2.224 1.593
8.25 | 386.2 2.330 |  e-=--
8.50 37.9 2.436 | =--=-
8.75 39.7 2.547 | ee----
9.00 41.6 2.663 1.695
9.25 43.8 2.797 | =e=--
9.50 47.1 2.997 |  smee-
9.75 50.0 3.168 | ===---
) 10.00 50.8 3.217 1.843

Figure 2. - Inlet gulde vane. Number l4-gage (0.083) mild steel.
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(a) Combination claw total- (v) Spike-type radial
pressure survey probe. thermocouple rake.

Figure 3. - Inlet-gstage instrumentation.
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Flow angle leaving guide vanes, B, deg
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@
T T T T [ § ‘
| Symbol Guide vane ‘
| incidence ‘
| angle,
| deg
40 I Open 0 ’
Solid -5 i
| o
o= == — = Desl v
I & — |-
/ o
30 ' PC( —
/
| //
| s .
|
20 ;
' |
! f
I
?
10 ' - ‘
i |
i
Hub{ ”W
O L
.5 .6 o7 .8 .9 1.0
Radius ratio, z
Figure 4, - Comparison of radial distribution of flow angle leav- .
ing guide vanes for 0° and ~5° guide=-vane incldence angles. -
Speed, 90-percent design; flow coefficient, 0.615. §
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i 5 { i ‘
3 L s
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[ © : : ‘
1.12 ” \ | f
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1.10+ S
' I H
H i .
; | ’
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|
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. Y SR SN S I S
28 36 44 52 60
Equivalent weight flow, Wa/6/8, 1b/sec
L 1 l ! L | b ]
6 8 10 12 14 16 18 23 22 24 26 28

Equivalent specific weight flow, WA/6/A5,
1b/(sec)(sq ft frontal area)

(a) Compressor total -pressure ratio ani root-mean total-pressure ratlo per stage.
Figure 5. - Over-all performance of 10-stage subsonic axial-flow compressor at guide-

vane incidence angles of 0° and -5° over range of weight flow at speeds from 50 to
100 percent of equivalent design speed.
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B Symbol Guide-vane /] /
° incidgnce angle, ;5"
by e
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g Solid -5
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Speed, percent equivalent design

(c) Adiabatic temperature-rise efficilency, compressor total-pressure ratio, and
equivalent weight flow at surge against percent of equivalent design speed.

Flgure 5. -~ Concluded. Over-all performance of l0-stage subsonic axlal-flow com-

pressor at gulde~vane incidence angles of 0° and -5° over range of welght flow
at speeds from 50 to 100 percent of equivalent design speed.
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Over-all static-pressure ratio, py/Pg

Po/Pn-1

Blade~row statlc-pressure ratio, Stage static-pressure ratio, pn/pn.z
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Gulde~vane /

- incidence angle,
— deg -

o 0
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2 4 6 8 10 12 14 16 18 20 22

Station location

Figure 6. ~ Static-pressure-ratio distributions for
00 and -50 guide-vane incidence at over-all static-
pressure ratio of approximately 6.25 at deslgn
speed.
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Stage adlabatlic temperature-rise efficiency,

(PS/Pl)e

Stage equivalent total-pressure
ratio,
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1.0
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Speed,
percent design
o 50 D 73
s o 60 O 74
* o 70 n 75
a 80 v 78
0o 90 o 82
¢ 100
2 Symbol Guide-vane
incidence angle,
deg
1.3 Open 0
Solid -5
Flagged Incipient surge
[ ]
1.2 k—#
a 4
o
?T%Q\ \\\\a¢
\c&o
1.1
QZNM£§;7
100.2 .3 '4 06 07

Flow coefficient, Q/UA

Figure 7. - Comparison of inlet-stage performance for 0° and
-50 guide-vane incldence angles over range of welght flow at
speeds from 50 to 100 percent of equivalent deslgn speed.
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| ' Spee&, ' Flow Aﬁgle of
| percent design coefficient, attack,
I Q/UA o
o} 50 0.36
40+ A 80 .50 Measured
0 90 .615
) Calculated with assumption of simple o
3 — radial equilibrium after guide vanes
5 l
-} ————] (o] /’
© o ———
o %0 | =T
Q
5 |
» |
)]
5 IR
& \
o A
3 ‘ il
3 |
3 | o
Y1 Q
% l -
= l NAC
Hub I ?

.5 .6 .7 .8 .9 1.0
Radius ratio,

(a) Measured and calculated angles of attack. Guilde-vane
incidence angle, 0°

Figure 8. - Angle of attack and axial velocity on first rotor
at three flow coefficlents.

CONFIDENTIAL

£00¢%

et

T, TR




NACA RM ES3H10 CONFIDENTIAL 27
1.2 | Spéed, ' " Flow
. | —_— percent design coefficient,
J —_— oua |
| TS 50 0.36
1.0 ' \\
[\0] l \\
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N \ ~N
| <
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s \ incidence angle, \
,__I .8 deg \
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(b) Axial-velocity distribution.

Figure 8, - Continued, Angle of attack and axial velocity on
firet rotor at three flow coefficlents.
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Angle of attack on first rotor, ap, deg
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l | ! | I

Gulde-vane
| incidence angle,
1 deg
I 0

| Flow coefficlent, — — — — -5
'Q/UA -
HO.36 = b e 1=
l o
] e
!
l
| _—
| .50 B P
| - =
Il poy
1 ~ |
| -1 -4
I \ \\'h“
| — —-1
|
Hub \ ~NACA,~
N5 .6 .1 .8 .9 1.0

Radius ratio, z

(c) Angle of attack calculated with assumption of simple radial
equilibrium after gulde vanes,

Figure 8, -~ Concluded. Angle of attack and axial velocity on
first rotor at three flow coefficients,
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1.0 T T T
‘ Speed,
percent design
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(a) Radial position a.

Flgure 9. - Element performance across inlet stage at five
radil over range of speed and weight flow.

CONFIDENTIAL

29




30

CONFIDENTTAL NACA RM ES3H10
1.0
i
vl
L (5
(o} L S
.8 - e
0
- ° 'l
g
) Q
.6
P T e
o Speed,
v — percent design —3 !
2
o
Q o 50 D 73 o ¢ u
E L o 80 o 74 ¢ O¢
o ¢ 70 b 75
: aoe on |
- v 78 1
i
m © 100 o & ° T:.
.2 |— Symbol Guide-vane o d
incldence angle, [ ¢
deg '
—— Open 0 H
Solid -5
0 Fl:_agged ;[ncipignt surge
1.3
]
3 %
8 é‘: A‘é é zo
2& . ot |
o ® 1.2 —A—
1) .‘ A 61
> |
-g O" q D e ] er ‘ '
o o 1= 4
LR ° o o °
8 & P 0 o
o o . _ o
E g 1.1 o ©
O o
o & hd . _
o A Bt bty -
= NACA
1.0
0 10 20 30 40 50

Angle of attack, a, deg

(b) Radial position b.

Plgure 9. - Continued. Element performance acroes inlet stage
at five radil over range of speed and weight flow.

CONFIDENTIAL

S LR AL e RN O

cone




Blade-element efficlency, n

(Pz/P1) e

Blade-element eguivalent total-
pressure ratio,
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Figure 9. - Continued. Element performance across inlet stage
at five radii over range of speed and weight flow.
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Blade-element efficlency, 7

Blade-element equivalent
total -pressure ratilo,

(Pz/P1) e
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Flgure 9. - Continued.

Angle of attack, a, deg

(d) Radial position 4.

Element performance across inlet stage

at flve radll over range of speed and welght flow.
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Figure 9. - Concluded. Element performance across inlet atage
at five radil over range of speed and welght flow.
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Figure 10. - Radlal distribution of flow conditions entering
first rotor calculated with assumption of simple radial
equilibrium for same mean-radius angle of attack for both
guide-vane settings.
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Guide-vane
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-——— .5

Rotor
blade

L

(c) Radial position e,
Figure 11. - Velocity vector diagrams at three radll

for first rotor at 0° and -50 guide-vane incldence
angles for same mean-radius angle of attack.

CONFIDENTIAL

35



36

Axial veloclty ratio, V, 1/Va 1 m
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Figure 12. - Radlal distribution of axial veloclty and angle of
attack on flrst rotor for gulde~vane lncidence angles from
~10° to 20°,

CONFIDENTIAL

NACA-Langley - 3-15-54 - 325




W

NACA RM ES3H10 CONFIDENTIAL
30 LA T T
Guide-vane
. incidence sangle,
 N— deg
| -10
e —
S | T
5] 20
E [ \‘h
10 ﬁ:
oo
‘ 10
|
0 }
W ' <
.3 : r/ ‘
cs.~ | /
g 10 I 20~
bt I
- (] ¢
G4 1
o |
o
- 'g» 20 1
(v) Angle of attack. Flow coefficlent, 0.58.
50 '
J
{
{
' =10 ==
40 ( i \\
} ——
‘ —
|
30 '
| /
H //
anl| 20| W
.5 .6 7 .8 .9 1.0
¢ ) Radius ratlo, =z

(c) Angle of attack, Flow coefficient, 0.31.

Figure 12. - Concluded. Radial distribution of axlal veloclty
and angle of attack on first rotor for gulde-vane incidence
angles from ~10° to 20°.
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